Czech National Centre of the European Research Infrastructure Consortium INSTRUCT ERIC

CIISB Official video

The structural biology of today is the pharmacology, therapy, and biotechnology of tomorrow

A gateway to realm of structural data for biochemists, biophysicists, molecular biologist, and all scientists whose research benefits from accurate structure determination of biological macromolecules, assemblies, and complex molecular machineries at atomic resolution.

Open access to 10 high-end core facilities and assisted expertise in NMR, X-ray crystallography and crystallization, cryo-electron microscopy and tomography, biophysical characterization of biomolecular interaction, nanobiotechnology, proteomics and structural mass spectrometry.

A distributed infrastructure constituted by Core Facilities of CEITEC (Central European Institute of Technology), located in Brno, and BIOCEV (Biotechnology and Biomedicine Centre), located in Vestec near Prague, Central Bohemia.

News

News archive

CIISB Research Results

Y. Luo, et al.: A sodium/potassium switch for G4-prone G/C-rich sequences, Nucleic Acids Res., 52 (2024) 448-461, 10.1093/nar/gkad1073

M. Soltysová, et al.: Structural characterization of two prototypical repressors of SorC family reveals tetrameric assemblies on DNA and mechanism of function, Nucleic Acids Res., 52 (2024) 7305-7320, 10.1093/nar/gkae434

D. Jankovská, et al.: Anticholinesterase Activity of Methanolic Extract of Amorpha fruticosa Flowers and Isolation of Rotenoids and Putrescine and Spermidine Derivatives, Plants-Basel, 13 (2024) 10, 10.3390/plants13091181

M. Anastasina, et al.: The structure of immature tick-borne encephalitis virus supports the collapse model of flavivirus maturation, Sci. Adv., 10 (2024) 13, 10.1126/sciadv.adl1888

P. Lapcik, et al.: A hybrid DDA/DIA-PASEF based assay library for a deep proteotyping of triple-negative breast cancer, Sci. Data, 11 (2024) 7, 10.1038/s41597-024-03632-2

N. Kunová, et al.: Polyphosphate and tyrosine phosphorylation in the N-terminal domain of the human mitochondrial Lon protease disrupts its functions, Sci Rep, 14 (2024) 17, 10.1038/s41598-024-60030-9

J. Sistkova, et al.: Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa, Sci Rep, 14 (2024) 20, 10.1038/s41598-024-68266-1

F. Niro, et al.: Fibrotic extracellular matrix impacts cardiomyocyte phenotype and function in an iPSC-derived isogenic model of cardiac fibrosis, Transl. Res., 273 (2024) 58-77, 10.1016/j.trsl.2024.07.003

More publications

CIISB Research Highlights

the best of science obtained using CIISB Core Facilities

  • JACS Au 2025

    JACS Au 2025

    Loschmidt Laboratories

    The scheme of the variational autoencoder-based pipeline for the design of novel sequences.

    Significance

    Enzymes play a crucial role in sustainable industrial applications, with their optimization posing a formidable challenge due to the intricate interplay among residues. Computational methodologies predominantly rely on evolutionary insights of homologous sequences. However, deciphering the evolutionary variability and complex dependencies among residues presents substantial hurdles. Here, we present a new machine-learning method based on variational autoencoders and evolutionary sampling strategy to address those limitations. We customized our method to generate novel sequences of model enzymes, haloalkane dehalogenases. Three design–build–test cycles improved the solubility of variants from 11% to 75%. Thorough experimental validation including the microfluidic device MicroPEX resulted in 20 multiple-point variants. Nine of them, sharing as little as 67% sequence similarity with the template, showed a melting temperature increase of up to 9 °C and an average improvement of 3 °C. The most stable variant demonstrated a 3.5-fold increase in activity compared to the template. High-quality experimental data collected with 20 variants represent a valuable data set for the critical validation of novel protein design approaches. Python scripts, jupyter notebooks, and data sets are available on GitHub (https://github.com/loschmidt/vae-dehalogenases), and interactive calculations will be possible via https://loschmidt.chemi.muni.cz/fireprotasr/.

    Kohout, et al.: Engineering Dehalogenase Enzymes Using Variational Autoencoder-Generated Latent Spaces and Microfluidics

    JACS Au 5 2025, 5(2), 10.1021/jacsau.4c01101

  • The FEBS Journal 2025

    The FEBS Journal 2025

    Lukáš Žídek Research Group

    Electrostatic potential of unphosphorylated and phosphorylated MAP2c.

    Significance

    Microtubule associated protein 2 (MAP2) interacts with the regulatory protein 14-3-3ζ in a cAMP-dependent protein kinase (PKA) phosphorylation dependent manner. Using selective phosphorylation, calorimetry, nuclear magnetic resonance, chemical crosslinking, and X-ray crystallography, we characterized interactions of 14-3-3ζ with various binding regions of MAP2c. Although PKA phosphorylation increases the affinity of MAP2c for 14-3-3ζ in the proline rich region and C-terminal domain, unphosphorylated MAP2c also binds the dimeric 14-3-3ζ via its microtubule binding domain and variable central domain. Monomerization of 14-3-3ζ leads to the loss of affinity for the unphosphorylated residues. In neuroblastoma cell extract, MAP2c is heavily phosphorylated by PKA and the proline kinase ERK2. Although 14-3-3ζ dimer or monomer do not interact with the residues phosphorylated by ERK2, ERK2 phosphorylation of MAP2c in the C-terminal domain reduces the binding of MAP2c to both oligomeric variants of 14-3-3ζ.

    Jansen, et al.: Characterization of multiple binding sites on microtubule associated protein 2c recognized by dimeric and monomeric 14‐3‐3ζ

    The FEBS Journal, DOI: 10.1111/febs.17405

  • Nucleic Acid Research 2025

    Nucleic Acid Research 2025

    Gabriel Demo Research Group

    Cryo-EM structure of 30S–30S dimer formed by aRDF protein.

    Significance

    Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress. Despite extensive studies on bacteria and eukaryotes, understanding factor-mediated ribosome dimerization or anti-association in archaea remains elusive. Here, we present cryo-electron microscopy structures of an archaeal 30S dimer complexed with an archaeal ribosome dimerization factor (designated aRDF), from Pyrococcus furiosus, resolved at a resolution of 3.2 Å. The complex features two 30S subunits stabilized by aRDF homodimers in a unique head-to-body architecture, which differs from the disome architecture observed during hibernation in bacteria and eukaryotes. aRDF interacts directly with eS32 ribosomal protein, which is essential for subunit association. The binding mode of aRDF elucidates its anti-association properties, which prevent the assembly of archaeal 70S ribosomes.

    Hassan, et al.: Novel archaeal ribosome dimerization factor facilitating unique 30S–30S dimerization

    Nucleic Acids Research 2025, 53(2), DOI: 10.1093/nar/gkae1324

More publications Research Highlights archive

Reader’s Corner

literature to read, science to follow

In this section, a distinct selection of six highly stimulating research publications and reviews published during past 6 months is presented. It is our hope that links to exciting science, which deserves attention of the structural biology community, will help you to locate gems in the steadily expanding jungle of scientific literature. You are welcome to point out to any paper you found interesting by sending a link or citation to readerscorner@ciisb.org. The section is being updated regularly.


 

2 Jan

CLEM-Reg: An automated point cloud based registration algorithm for correlative light and volume electron microscopy

Correlative light and volume electron microscopy (vCLEM) is a powerful imaging technique that enables the visualisation of fluorescently labelled proteins within their ultrastructural context on a subcellular level. Currently, expert microscopists align vCLEM acquisitions using time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the 3D alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques. These point clouds are derived from segmentations of common structures in each modality, created by state-of-the-art open-source methods, with the option to leverage alternative tools from other plugins or platforms. CLEM-Reg drastically reduces the time required to register vCLEM datasets to a few minutes and achieves correlation of fluorescent signal to sub-micron target structures in EM on three newly acquired vCLEM benchmark datasets (fluorescence microscopy combined with FIB-SEM or SBF-SEM). CLEM-Reg was then used to automatically obtain vCLEM overlays to unambiguously identify TGN46-positive transport carriers involved in the trafficking of proteins between the trans-Golgi network and plasma membrane. The datasets are available in the EMPIAR and BioStudies public image archives for reuse in testing and developing multimodal registration algorithms by the wider community. A napari plugin integrating the algorithm is also provided to aid end-user adoption. DOI: 10.1101/2023.05.11.540445

26 Nov 2024

Large-Scale Quantitative Cross-Linking and Mass Spectrometry Provides New Insight on Protein Conformational Plasticity within Organelles, Cells, and Tissues (Biorxiv)

Many proteins can exist in multiple conformational states in vivo to achieve distinct functional roles. These states include alternative conformations, variable PTMs, and association with interacting protein, nucleotide, and ligand partners. Quantitative chemical cross-linking of live cells, organelles, or tissues together with mass spectrometry provides the relative abundance of cross-link levels formed in two or more compared samples, which depends both on the relative levels of existent protein conformational states in the compared samples as well as the relative likelihood of the cross-link originating from each. Because cross-link conformational state preferences can vary widely, one expects intra-protein cross-link levels from proteins with high conformational plasticity to display divergent quantitation among samples with differing conformational ensembles. Here we use the large volume of quantitative cross-linking data available on the public XLinkDB database to cluster intra-protein cross-links according to their quantitation in many diverse compared samples to provide the first widescale glimpse of cross-links grouped according to the protein conformational state(s) from which they predominantly originate. We further demonstrate how cluster cross-links can be aligned with any protein structure to assess the likelihood that they were derived from it.​

Reader’s Corner Archive

Quote of April

“Your theory is crazy, but it's not crazy enough to be true.”

Niels Bohr

https://ec.europa.eu/info/research-and-innovation/research-area/health-research-and-innovation/coronavirus-research-and-innovation/covid-research-manifesto_en

You are running an old browser version. We recommend updating your browser to its latest version.